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Introduction

The general theory of chemical shifts has been well known since the paper
of Ramsey(l) in 1950. With the development of improved methods for obtaining
new Hartree-Fock wave functions interest has again been rekindled to theoreti-
cally determine the chemical shift tensor in this approximation. Although the
final equations are well established they have derived by several different
routes and often in different formalisms. Since one's ultimate goal is to not
only correctly predict the chemical shift but also to understand the origins of
its various contributions, it is clearly iwportant to have a good feel foruhow
the various theoretical terms arise. The purpose of the present discussion is
to present vhat we believe to be a thorough and, hopefully, clear derivation of
the theoretical expressions in what we also believe to be the most transparent
approach. A variety of background material is included and we delve somewhat
more deeply into some of the steps than would one in a formal journal article.
Following a brief review of the pertinent Hamiltonian the Hellmann-Feynmann

(2,3)

theorem is used to establish the general shift expression. This is followed

(4)

by a discussion of London's approach to the origin-gauge problem and perturbed
Hartree-Fock theory in a variable basis set. Finally, we derive the chemical
shift equations employing London's approach and show how they arve trivially

modified for the case where London orbitals are not used.

The Hamiltonian
In the semi-classical treatment of the interaction of a molecular system

with electromagnetic radiation the usual Born-Oppenheimer electronic Hamiltonian

is given by

. 1 e 2
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for a nucleus N coupled divectly to an external magnetic field H. A1 is the

th
vector potential of the 1 electron while V contains all other interactions being
considered including all of the attractive and repulsive coulomb interactions.

The vector potentfal consists of two parts:

ki e
Irg-RyD3

1 .
A, = ) llx(li R) +

. 2)

The fi{rst part is due to the presence of the external field H and contains an
arbitrary vector R due to the fact that in the selection of A1 we are free.to
select any gauge which, in this example, fs an arbitrary reselection of the origin
of the coordinate system. No such freedom of relative origin exists for the second

term, however, which is the contribution to A, of the nuclear moment and wherve

i "N

distances arve measured with respect to R the location of p The form

N’ N°

exhibited can further be modified by the addition of an arbitrary term of the
type grud(f(ri)) since curl (grnd(f(ri))"o and does not change the physical
total magnetic field. In any complete calculation the choice of gauge is, like

(5) h

the choice of coordinate system, fmmaterfal. Epstein as shown that the
approximate unrestricted coupled Hartree-Fock theory i{s also gauge invariant
within any given set of trial functions in the sense of yfelding {dentical energics
for an arbitrary choice of gauge. The general problem is, of course, that exact
calculations are not currently possible for most molecular systems of interest
and Hartree-Fock calculations usually employ efther a limited basis sct or
approximations to the necessary integrals.

Since the direct nucleus-field coupling is easily treated, the presence of the

vector potential yields a perturbation of the form (electron subscript and sum

repressed)
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where the coulomb gauge (VeA=0) has been selected

For a system with multiple perturbations such that

H e Hosadll® o g P o g AP 4 ... () 4
o

wvhere a,B are the usual ordering (expansion) parameters, we may expand both the

wavefunction and energy in a similar series:

l"> - l“’o> + Glﬂ'(a)> + ﬂlw(8)> + anlw(alﬂ)> + TS (5)
=g + ac () 4 pe®) 4 gpe(@®) . (6)
so that, for example,
" :
(0.8) i ,3.._‘1.. B
- RIVRTL N
a-a-- som()
(a) b
R - ()
Q-Bncoono

(2,3)

The Hellman-Feynman theorem yields the result

% - B "

8o that further differentiation leads to
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S
or, since the mixed derivative is independent of the order of differentiation
2
s - ?SL 4 3323 a1
38 3a | R H’ +<¢'l ' la T !
a result which Moccia(7), referring to earlier work by Dalgarno and Steward(s),
callsithe interchange theorem. Accordingly, we find
(@,8) o @) | p(®) 4 (8) 1y (@) a,B)
LR el ]‘p°>+<¢°|£ |w >+<¢.o|afﬁ< ’ |¢o> s
where the second term is the hermitian adjoint of the first term.
If we write the chemical shift teusor ¢ such that the nuclear spin
Hamiltonian is
L = - e - o)y e
then
H * H
04 = 2% % <¢( i)lé¢{fuNJ)|¢°> + <¢OIJZ§"NJ)|W( s
3“ M
Nj “- =0
"N
14)

+ < | A0 Ly > : : -

and we can calculate the general i-j element of the tensor o from a knowledge
of |¢°> and the first-order perturbative effect of the externgljfield H on |w>.
Use of the interchange theorem reverses the H and p symbols but must lead to the
same physical answer.

The particular choice above of finding the first order external-field-
perturbed wavefunction has the practical advantage that for a system of many
nuclei it need be carried out only once whereas had we chosen to determine

v(uﬂj) a calculation would be required for each nucleus N.




London Orbitals

The freedom to select an arbitrary gauée would seem to add flexibility to
the chemical shift calculation in terms of choosing a gauge that leads to a parti-
cularly transparent physical interpretation. The fact that most approximate cal-
culations are not gauge invariant diminishes this flexibility and presents one
with the problem of which gauge is "best™ in a particular situation. The usually
trivial choice of coordinate system origin is now more important since this con-
stitutes one class of gauge choice, One solution to this particular problem

(%)

is to follow London and replace the orbital ¢n(r) centered at Rn by what

we shall term a London orbital(g)(LO)

~-ie
: ARy er
%y (P) = . ¢,(x) = [n > (15)
since now
~-ie
e R MBe)x e
= ( —(A-
(p+ A)x, =e (P + C(A-ARN)O (16)
and the vector poténtial term in the remaining operator becomes
wx (r~Ry)
1 N
: A-A(R ) = SHx(r~R ) + e
' n 2 n [r-RN[ an

Now, in both terms in the operator {applied to a particular orbital n), a
specific reference origin is referenced: still the nucleus N for.the second
term and now Rn' the center of orbital n, for the first term. The use of
London orbitals thus suppresses any arbitrariness in selection of origin; omne
has, in fact, for each choice of origin made a unitary transformation of the
basis so that so long as one uses the same basic orbital set (¢n) the gauge
invariance is, as Epstcin(lo)puts it, "enforced". Epstein points out that

this resulting gauge invariance within a given set of functions is not import-

ant for just that point, but rather that the physical significance lies in the

I--.-Il-ﬂh-t-n-.-ll-.--I-------..-----I---II-I-------Lv
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fact that e—ieA(R'o.r;ﬁc¢ (r) is through first order in H the exact eigenfunction
n
of a one-electron, one center uniform magnetic field problem which has Qn as an

eigenfunction when H=0. Since London orbitals(sometimes called GIAO) account

(11)

for only the translational invariance, some feel that the gauge problem

can be overcome only by the use of large basis sets, despite some recent success-

es(lz)obtained by use of the London basis.

Perturbed Hartree Fock Theory and Variable Basis Sets

Use of London orbitals is an example of working with a variable basis, that

is, a basis set in which one or more perturbation parameters are explicity con-

(7 y

tained in the description of the wave functions employed. Moccia has treated

this problem and presents general formuias which are very useful not only for

the variable basis set problem but for the more conventional approach in which
the perturbation ordering parameters appear only in the Hamiltonian. One pur-
pose of this section is to briefly review the general procedure, to establish
notation, and finally to present expressions which allow the determination of
W(“i) presented before in the general formula for the chemical shift tensor
(equation 14).

We consider a closed shell system described by a set of doubly-occupied
molecular orbitals wi(r) written as a single Slater determinant. The total
energy is given by

occ occ
z-=)ij 20, + ] (21, -K.,) (18)

where f11 is the expectation value of all the one-electron terms with wi and
Jij = (i1/jj) and Kij =(ij/ji) are the usual coulomb and exchange integrals in
the Mo(wi) basis:

- * * ..];
(13 |k1)=/¢, (r )y, (r,) AUNCUCS

19)




Requiring E to be stationary with respect to an arbitrary change Gwi in wi

subject to maintenance of the MO orthogonality leads to the Fock equations

*
I <m|f|n>cni + Z Z ercsjcni {2{mn|rs) - (ms|rn)} = X <m|n> (20)

C
n J r,s,n n»j€1j nj

where the H0|W1> has been expanded in a general atomic orbital basis |n>

where

lvg> = :)2 In>C, 4 (21)

and <m|n> is an overlap integral in the basis |n>. Since for this case

(doubly occupied orbitals)the density matrix P can be written

occ *
P ™ § i (22)

we can rewrite the Fock equation in matrix form as

{F + G(P)]Ci = § cijscj @3)

where
F = <up|f|n>
mn
G(P) = Es Psr{<mr|g|ns>— %< nr |g|sn>)

smn.’ <m|n> (24)

and Ci is the column vector representation of wi in the A0 basis {|n>}. The
self-consistent nature of the approach is apparent; one assumes an initial
density matrix and iterates until self-consistency is reached. Usually, the

matrix € (of elements €y ) is presumed diagonal, If one is to carry out a

3

h&-‘—“—» py




perturbed Hartree-Fock procedure, this may be presumed to be so in zeroth order
but not in higher orders.
(7) (a)
Following Moccia , consider the first order perturbation equation in 5&&

for the Hartree-Fock procedure:

(F + ¢ (P + @y G(a)(P))C: " : 5

Here we have used a diagonalized ¢ in zeroth order. By rearrangement we

ij
obtain ~
occ
0, 0 0.0, @ (a) (a) o.(a),, 0 (a) 0,0 :
= ~ = ScC -
(FHG (P) - eSO)Cy + (F7+ 6 (P) ~ €87 )Cy § €53 S € 26)
Note that G(P) may contain a first-order contribution from both the density ?

matrix P and the electron repulsion terms <mr|g|ns> if a variable basis set
is employed. By a procedure similar to ordinary perturbation theory, CZ, may

be projected on bofh the occupied and unoccupied orbitals to obtain

ot . (a) (o) _ (Oc (@), 0
o Ecc( _leot@oy o iac C, [F e M S e L e
i 2k ik o o k (27)
k k €4 " %

where, we note, both the occupied and vacant (in zeroth order) MO's enter into the

a

expression for Ci

, and where

{@) - (o) o 1 o
& W g,s ! o {<on|g[ns>"- 2 <mr|g|sn>"}

+ P:r (<mrlg|n5>(a) - -% <mr|g|sn>

(a)}]

(28) |




€10

(o)

Since an iterative soli.ation to P is desired where

occ +
P=2) cy¢,
3
occ
P 2T 1 e » e (29)
3 s h
it is useful to rewrite the expression for C: as
occ vac Co C°+
o 1 ¢ o ot_(a)_.0 k k (a) o _(a) o
B e - + —— e (T ¢ -
¢, 21): G C. 8 6 E(o_o) (F €, S )€
Ci Ck e
.'-
vac €2 ¢°
k_k € Al )
+) Y ¢ () CS
x (ei ek) i (30)
2¢€ o .ot
so that in the first term one may recognize P%<= 2 z Cka and in terms
k
two and three the term CQEET/(c;Lei) which need be calculated only once, as

indeed is true for the entire second temm. Indeed, if we neglect the third

term we have what is referred to as uncoupled Hartree-Fock perturbation theory.(13)
it is the electrostatic integrals that couple the various Cg equations that
require the iterative procedure in perturbed Hartree-Fock and lead to this
approach being referred to as "coupled" Hartree-Fock.

While our procedure requires us to determine the C:i (or C:) in the general

wave-function expansion

lo,> = El n>, = r21|n°>c::i + ln_°‘>c::i + Jae, + ... (31)

use of a variable basis introduces the perturbation parameters in the basis and

thus into a variety of integrals. For example, in employing London orbitals

V



11
for the chemical shift problem
-ie
Mic A(Rm) P N :;ﬁi—z—- A(Rn)-r
e = I(¢me ) (¢ne )dv (32)
d, since A(R )= SHxR
and, sinc D)= xRy
) _ _de .* X
Son 3 e o b (R Rn)xr)jdV (33)

(a)

)
Similar terms enter in the F(a’ and G matrices. The general manipulation of

such terms will become more apparent as the next section is developed.

The Chemical Shift Expression

We wish to write out explicitely the various contributions to the chemical
shift tensor and exhibit their origin in terms of the general expression given
in equation 14. We will assume that London orbitals are to be employed but will

be able to see also the resulting expression when ordinary AO's are used

H, ,u..) &
Lo« Ml > s 1)y
The 8implest term to consider is that in which only the unperturbed wave-

function enters and the bilinear H-p term arises in the perturbing Hamiltonian.

2 W, XTI 2
e N N e 1
S (Hxr) = . [(H uN)(r rN) u rN)(uN )] 3
N N (34)

where ™~ r-RN. Accordingly,

2

(H,,u,.) e 1 T (1,1)
j'e i’"NjT = [Ceer)S,, - (v, (), =, & ’
2m<:2 N1 LA r; f& ij (35)




12
If we define the row veetor X as the gnugcleu basis vector whose components
are ¢“F|n> the various zeroth order MO's k become xoc: and l1 becomes
oce oce
+ ¥ 1,1 s Oc of el g 1)
@)~} & JQ{( ) =T ) 20,0
1°1)
k k
" X P:m <m|j?i(l'l)|n> (36)

n,m i}

We remind ourselves again that |n>,|m> are gaugeless, non-L0 orbitals.

2. q,(“i)l :ﬁcﬁuNj)lw0> + h.a, (12 + 13) 1]

As we finally cvaluate 12 and 13 to complete the calculation, the desirability

of dividing the integral into two parts will become apparent. Since the

v
perturbed wave function is now involved, the perturbed MO's Cé“i) + X(HI)C:
are composed of two parts,
occe
Ul) 2 () ou
(12)1j - z 2C c/t/ \\ . + h.a:
oce
; o o ¥ (n
- Trl 2( (x ‘jz Nj ) + h.a.
X % % X¢ Xo (37)
Since
occ =
P - z 2¢, €,
M) .0y 9%, o BT M) ot
P = ’ - " : +
Py E 2(c ¢, C\ ¢, ?
| A0, . O
me ‘
‘N (38) ’




13. =

we finally obtain (the Hermitian adjoint now explicitely included)

1,0 e NPy
), =) P, <= n>
2°1) - nm ‘1 'me r: (39)

(t

1. will contain x ‘1) which contributes the "i part of the H-u bilinear term.

The derivation must be done carefully since the perturbation operator is a

derivative operator and will act on the x(“i). 13 can qQuickly be put in the form

L O ({TH
(1, = 7 P 1M ) + o A 40)
Since
-ie ~ie
e, v o A(Rn)°t jﬁz~—A(Rn)°r .
e Avpe ¢n = e { — Aep|n>

+ ;E—-— As (‘:\ (—';,’1-27— AR D) [n>) 41)

the contribution from the second term takes on a different form and we finally

obtain
2 (r, xp)
o ie "N s
(13)11 o an <m"h 2 [(Rm— R“)xrli 3 oo
me . ™
)
’ 2 (Rer)s,, - (r.),(R)
-TrP:m <m| e 5 n_ N ;j_ N'i ' n j|n>
2me rN (42)

where we note the resemblance in form °f the second part of the expresston for 13

L}
to that for I1 in equations 36 and 35; indeed, they may be combined.

Expressing p= -#iV we may combine all terms to finally obtain
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=) o <m|*§£~ i A éiif(rN)i(r-R“{j
n,m 2mc2 r:

n>

2 © o (r xV)
+ P <m| ~S—5 ((Rm— Rn)xr)1 N §~1~— ]n>

b 2me N

< (r xV)
efi ' [n>} (43)

1,10 e . 2
* 1(an )1<m|mc 3

N
Having specified a particular perturbation - the external H-field and -

pu-field-the perturbation expressions may also be explicitely given.

internal
H i)

- )
The general matrix element for S(ni' has been given in equation 33. For F

we obtain

(“i) ie
P —ame (@ R 20 Hog [

.1 s
+ 1 <m[—2--li{c~-((raR“)xV)i |n> (44)

where Sﬁfcorc is the usual unperturbed l-election part of the Hamiltonian.

The G(“i) term is given by replacing in equurion‘28 Prsfa)by Pra(“i)whero' for

example,

) to
:ernglanL> = <nr|g Z—— LR -R)xr))y

+ ((R_-R )xr, ) )[ns> i
r 8 271 (45)

Equation 43 represents the general results for the i-j element of the
shiclding tensor calculated from the coupled perturbed Hartree-Fock approach.

For solution work we may desire only the isotropic part of o obtained by
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setting i=j, and taking one-third the sum over {i.

1
O4g0 = 3 T7(0) (46)

To obtain the proper result for the case where we do not use London orbitals

one simply sets Rn’Rm equal to zero in equation 43. Similar simplifications

occur in the perturbation part of the calculation; in equations 33,44, and 45
@)

one sets Rm’Rn'Rr‘Rs all equal to zero. S vanishes as does the éﬂfcorc

term in 44, and G(“i) is considerably simplified. Translational invariance-
is lost, of course, and one's answer may now depend upon the choice of origin.

A convenient choice often employed is to locate the origin at the nucleus

of interest; this has the effect of replacing r in the final equations 33,43,

44, and 45 by ™ r-RN.
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